Drag, lift, and torque coefficients for various geometrical configurations of elliptic cylinder under Stokes to laminar flow regimes

Author:

Oh Geunwoo1,Park Hyunwook1,Choi Jung-Il2ORCID

Affiliation:

1. Department of Computational Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea

2. School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul 03722, Republic of Korea

Abstract

In this study, the drag, lift, and torque coefficients are derived as a function of the axis ratio ( AR) and angle of attack ( AOA) for elliptic cylinders with simple and straightforward correlations in flow regimes ranging from Stokes to laminar flow. An immersed boundary method, based on an implicit direct forcing scheme to impose a more accurate no-slip condition for viscous flow, is utilized to compute the hydrodynamic forces on the elliptic cylinder. Numerical simulations are performed for two-dimensional flow around an elliptic cylinder. The ARs and AOAs of the elliptic cylinder are within 0.3–1.0 and 0°–90°, respectively. A critical Reynolds number ( Re crt) map is obtained, indicating a transition between steady and unsteady flows as a function of the AR and AOA. Based on Re crt for the circular cylinder, it is observed that a more prolonged elliptic cylinder delays Re crt to a higher Re value at low AOAs but causes an unsteady transition at a lower Re value when the AOA exceeds ∼30°. The correlations are selected as simple functions, such as power laws and trigonometric functions, based on the hydrodynamic force behaviors according to variations in the AR, AOA, and Re. The prediction accuracy of the proposed correlations assessed in terms of mean relative errors is ∼1.5%, 8.9%, and 11.2% for drag, lift, and torque, respectively. This comparison demonstrates that the proposed correlations are suitable for accurately predicting hydrodynamic forces in Stokes to laminar flow regimes, even when using simple basic forms.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3