1. Machine learning and the physical sciences;Rev. Mod. Phys.,2019
2. M. M.
Bronstein
, J.Bruna, T.Cohen, and P.Veličković, “Geometric deep learning: Grids, groups, graphs, geodesics, and gauges,” arXiv:2104.13478 (2021).
3. Recognizing rigid patterns of unlabeled point clouds by complete and continuous isometry invariants with no false negatives and no false positives,2023
4. N.
Thomas
, T.Smidt, S.Kearnes, L.Yang, L.Li, K.Kohlhoff, and P.Riley, “Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds,” arXiv:1802.08219 (2018).
5. Scalars are universal: Equivariant machine learning, structured like classical physics