To age or not to age: Anatomy of a supercooled liquid’s response to a high alternating electric field

Author:

Richert Ranko1ORCID

Affiliation:

1. School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA

Abstract

Physical aging and structural recovery are the processes with which the structure of a system approaches equilibrium after some perturbation. Various methods exist, that initiate structural recovery, such as changing the temperature or applying a strong, external static field. This work is concerned with high alternating electric fields and their suitability to study structural recovery and aging. The present work demonstrates that rationalizing the nonlinear dielectric response of a supercooled liquid to high-amplitude ac-fields requires multiple fictive temperatures. This feature is in stark contrast to structural recovery after a temperature down-jump or a considerable increase in the static electric field, for which a single parameter, the fictive temperature or material time, describes the structural change. In other words, the structural recovery from a high ac-field does not adhere to time aging–time superposition, which is so characteristic of genuine aging processes.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3