Affiliation:
1. School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
Abstract
Physical aging and structural recovery are the processes with which the structure of a system approaches equilibrium after some perturbation. Various methods exist, that initiate structural recovery, such as changing the temperature or applying a strong, external static field. This work is concerned with high alternating electric fields and their suitability to study structural recovery and aging. The present work demonstrates that rationalizing the nonlinear dielectric response of a supercooled liquid to high-amplitude ac-fields requires multiple fictive temperatures. This feature is in stark contrast to structural recovery after a temperature down-jump or a considerable increase in the static electric field, for which a single parameter, the fictive temperature or material time, describes the structural change. In other words, the structural recovery from a high ac-field does not adhere to time aging–time superposition, which is so characteristic of genuine aging processes.
Funder
National Science Foundation
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献