Positive temperature coefficient of resistance of Mg-GeO2 nanowire array film

Author:

Choudhury Ankita1,Dey Arka1ORCID,Ghosh Chiranjib1ORCID,Dalal Avijit1ORCID,Mahapatra Rajat2ORCID,Biswas Saikat2ORCID,Halder Nilanjan3ORCID,Mondal Aniruddha1ORCID

Affiliation:

1. Department of Physics, National Institute of Technology Durgapur 1 , Durgapur 713209, India

2. Department of Electronics and Communication Engineering, National Institute of Technology Durgapur 2 , Durgapur 713209, India

3. Department of Physics, Manipal University Jaipur 3 , Jaipur 303007, Rajasthan, India

Abstract

Here, glancing angle deposition is employed to synthesize the undoped GeO2 and Mg-doped (0.4 and 0.8 at. %) GeO2 nanowires (NWs) on a Si substrate. The microscopic images show the formation of the NW-like morphology of the grown materials. The gradual decrease in the average ratio of length to diameter depicts the worsening of the formation of NWs with the incorporation of Mg into the GeO2 host lattice. This also affects the crystallinity characteristics of the materials, which have been demonstrated from the selected area electron diffraction (SAED) pattern of the materials. The polycrystallinity nature of undoped GeO2 NWs changes to amorphous due to the introduction of Mg, which has been confirmed from both the obtained SAED and x-ray diffraction patterns of the samples. The presence of Mg was confirmed from the obtained broad bands at 473 and 437 cm−1 in the Fourier transmission spectrum of the doped samples. The increasing conductance with the temperature of Au/undoped GeO2 devices can be explained by the thermionic emission process, whereas the Mg-GeO2 device shows an overall decrease in conductance with increasing temperature. We have ascribed the origin of this abnormal conductance as the positive temperature coefficient of resistance, which is one of the first reports, due to the generation of random grain boundaries and enormous electron trapping at the Au/Mg-GeO2 NW junction. Furthermore, the undoped GeO2 NW device shows good temperature-dependent conductivity as well as stability compared to the doped one.

Funder

Scheme for Promotion of Academic and Research Collaboration

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3