A circle-based interface reconstruction algorithm based on the coupled volume-of-fluid and level set method

Author:

Chen YujieORCID,Gong Junhua,Lu WeiORCID,Wang BohongORCID,Sun DongliangORCID,Yu BoORCID,Zhang WeiORCID,Tao WenquanORCID

Abstract

The interface tends to behave as a circular shape under the effect of surface tension in the two-dimensional two-phase fluid flow. In this study, based on the coupled volume-of-fluid and level set (VOSET) method, an accurate circle-based interface reconstruction (CIR) algorithm for structured meshes is proposed, which features a straightforward implementation procedure. A portion of the standard circle is employed to approximate the curve interface, without the need for complex classification, coordinate transformation, and equation transformation. The radius of this circle is computed simply by the curvature and signed distance at the mixed cell center, and the center of this circle is determined using a straightforward dichotomy method under the mass conservation constraints. Results indicate that the coupled VOSET and CIR (VOSET-CIR) method maintains superior computational accuracy in the signed distance, interface curvature, and dynamic interface reconstruction compared to the coupled VOSET and piecewise linear interface calculation (VOSET-PLIC) method, with accuracy improvements ranging from 34% to 1490% across different test cases. Furthermore, the VOSET-CIR method outperforms the efficient least squares volume-of-fluid interface reconstruction (ELVIRA) and PLIC algorithms in reconstructing random circles and surpasses the quadratic spline based interface reconstruction (QUASI) algorithm in reconstructing random squares. In terms of computational efficiency, except for the initial PLIC algorithm, the time costs of the VOSET-CIR method are substantially lower than those of the ELVIRA and QUASI algorithms, as well as the VOSET-PLIC method.

Funder

National Natural Science Foundation of China

Joint Funds of the National Natural Science Foundation of China

Scientific Research Project of Beijing Educational Committee

Award Cultivation Foundation from Beijing Institute of Petro-chemical Technology

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3