Photovoltaic hosting capacity assessment of a distributed network based on an improved holomorphic embedding load flow method and stochastic scenario simulation

Author:

Jiang Wenxin1ORCID,Du Zhaobin1ORCID,Zhou Weixian1,Lin Xiaoke1

Affiliation:

1. Engineering School of Electric Power, South China University of Technology , Guangzhou, China

Abstract

The increasing proportion of distributed energy in the distribution network poses a significant challenge to effectively absorbing distributed generation (DG). On this premise, the DG hosting capacity (HC) assessment in the future distribution network based on the secure operation boundary of the power grid is necessary. In this paper, an improved holomorphic embedding load flow method (HELM) is employed to construct the relationship between the photovoltaic HC (PVHC) and each constraint to determine the upper limit of the comprehensive PVHC. Furthermore, a screening method of PV locations in the distribution network is constructed to screen the alternative PV locations with strong voltage regulation ability and reduce the alternative multi-point schemes, paving the way for simplifying the PVHC assessment based on a stochastic scenario simulation. Finally, a PVHC assessment based on the stochastic scenario simulation is proposed to expand the applicability of the assessment based on improved HELM. The negative impact of PV uncertainty is quantified by generating stochastic load flow scenarios based on the upper limit of the PVHC from improved HELM. The PVHC assessment in the high-voltage distribution network IEEE30 is analyzed to prove the efficiency and comprehensiveness of PVHC assessment in the distribution network.

Funder

the National Science Foundation of China

Publisher

AIP Publishing

Reference33 articles.

1. State-of-the-art of hosting capacity in modern power systems with distributed generation;Renewable Energy,2019

2. Power system performance,2011

3. F. Liang , “ Distributed/centralized energy storage placement and capacity selection considering distribution network power losses and voltage swings,” M.S. thesis ( Nanjing University of Science & Technology, 2021).

4. Identification of critical transmission lines considering multiple influencing factors;Proc. of the CSEE,2019

5. Probabilistic hosting capacity for active distribution networks;IEEE Trans. Ind. Inf.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3