The flexoelectric properties of various polymers and energetic composites

Author:

Hafner Thomas A.1ORCID,Örnek Metin1ORCID,Costello Conor2ORCID,Nunes Cohen T. V.2ORCID,Son Steven F.1ORCID

Affiliation:

1. School of Mechanical Engineering, Purdue University 1 , West Lafayette, Indiana 47907, USA

2. School of Aeronautics and Astronautics, Purdue University 2 , West Lafayette, Indiana 47907, USA

Abstract

Electroactivity of polymers used in energetic materials may result in charge separation that could result in safety concerns (unintentional ignition) or be exploited for multifunctional applications. We measured the flexoelectric properties of several polymers and energetic composites including poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)], nanosized aluminum (nAl)/P(VDF-TrFE), poly(vinylidene fluoride-co-hexafluoropropylene) [P(VDF-HFP)], micron aluminum (μAl)/P(VDF-HFP), hydroxyl-terminated polybutadiene (HTPB), ammonium perchlorate (AP)/HTPB, μAl/AP/HTPB, polytetrafluoroethylene (PTFE), and polydimethylsiloxane (PDMS). The presence of flexoelectricity in PTFE (Teflon®) and the relatively high flexoelectric coefficient of P(VDF-HFP) (Viton®) measured in this work may help explain accidents involving the production and use of Magnesium-Teflon-Viton (MTV) that in many instances have been attributed to electro-static discharge. The addition of aluminum nanopowders to the P(VDF-TrFE) increased the flexoelectric coefficient by ∼30%. However, the addition of aluminum micrometer particles (10 wt. %) to P(VDF-HFP) decreased the effective flexoelectric coefficient, while an increase was observed when the aluminum loading was increased from 10 to 20 wt. %. The effective flexoelectric coefficient of HTPB and two propellant compositions (AP/HTPB and μAl/AP/HTPB) were measured to be in the same range as each other. The effect of particle addition (nAl, μAl, and AP) on flexoelectricity was different depending on the binder, further illustrating the complexity of flexoelectric properties in composite energetics. This may be somewhat explained by competing effects where particle additions (nAl, μAl, and AP) create additional strain gradients that contribute to flexoelectricity, but the particle additions also replace the mass of flexoelectric polymer binders (P(VDF-TrFE, P(VDF-HFP), and HTPB) with particles (nAl, μAl, and AP) that are less flexoelectric.

Funder

Air Force Office of Scientific Research

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MAX phases: Unexpected reactivity under impact;Applied Materials Today;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3