The occurrence mechanisms of extreme events in a class of nonlinear Duffing-type systems under random excitations

Author:

Zhao Dan1ORCID,Li Yongge1ORCID,Liu Qi12ORCID,Zhang Huikang1ORCID,Xu Yong13ORCID

Affiliation:

1. School of Mathematics and Statistics, Northwestern Polytechnical University 1 , Xi’an 710072, China

2. Department of Systems and Control Engineering, Tokyo Institute of Technology 2 , Tokyo 152-8552, Japan

3. MOE Key Laboratory for Complexity Science in Aerospace, Northwestern Polytechnical University 3 , Xi’an 710072, China

Abstract

The occurrence mechanisms of extreme events under random disturbances are relatively complex and not yet clear. In this paper, we take a class of generalized Duffing-type systems as an example to reveal three mechanisms for the occurrence of extreme events. First, it is intuitive that a very large excitation can generate extreme events, such as the Lévy noise. In such a case, extreme excitation works, while it does not require much about the systems. Second, when a system has a bifurcation structure, if the difference of the branches at the bifurcation point is large, a randomly varying bifurcation parameter can lead to extreme events. Finally, when a system has rare attractors, a random impulse excitation, such as Poisson white noise, is able to cause the system to escape from one general attractor into rare attractors. Such a kind of special regime switching behavior can lead to extreme events. These results reveal the possible mechanisms of extreme events in a class of nonlinear Duffing-type systems and provide guidance for further prediction and avoidance of extreme events.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Natural Science Foundation of Chongqing

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Qualitative analysis of a Filippov wild-sterile mosquito population model with immigration;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3