Nonstationary feature extraction based on stochastic resonance and its application in rolling bearing fault diagnosis under strong noise background

Author:

Wang Zhile1ORCID,Yang Jianhua1ORCID,Guo Yu2ORCID,Gong Tao1ORCID,Shan Zhen1ORCID

Affiliation:

1. Key Laboratory of Mine Mechanical and Electrical Equipment, School of Mechatronic Engineering, China University of Mining and Technology 1 , Jiangsu, Xuzhou 221116, People’s Republic of China

2. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology 2 , Yunnan, Kunming 650500, People’s Republic of China

Abstract

When the load and speed of rotating machinery change, the vibration signal of rolling bearing presents an obvious nonstationary characteristic. Stochastic resonance (SR) mainly is convenient to analyze the stationary feature of vibration signals with high signal-to-noise ratio. However, it is difficult for SR to extract the nonstationary feature of rolling bearings under strong noise background. For one thing, the frequency change of nonstationary signals makes the occurrence of SR very difficult. For another, the features of rolling bearings are large parameters and further prevent the SR method from performing well. Therefore, combined with order analysis (OA), adaptive frequency-shift SR is presented in this paper. To solve the problem of frequency change, OA is used to convert the nonstationary feature into stationary feature, which resamples the nonstationary signal in the time domain to stationary signal in the angular domain. To solve the other problem, the frequency-shift method based on Fourier transform is adopted to move the fault feature frequency to low frequency, and thus SR is more likely to occur under small parameter conditions. The simulated and experimental results indicate that not only the amplitude of fault feature but also the signal-to-noise ratio is significantly improved. These demonstrate that the fault features of rolling bearing in variable speed conditions are extracted successfully.

Funder

National Natural Science Foundation of China

Major Science and Technology Projects in Yunnan Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3