The mechanism of biofilm detachment in porous medium under flow field

Author:

Tang Yangyang1ORCID,Zhang Zheng1ORCID,Tao Cong1ORCID,Wang Xiaoling12ORCID

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing 1 , Beijing 100083, China

2. School of Engineering and Applied Sciences, Harvard University 2 , 02138 Cambridge, Massachusetts, USA

Abstract

Biofilms are communities formed by bacteria adhering to surfaces, widely present in porous medium, and their growth can lead to clogging. Our experiment finds that under certain flow conditions, biofilms detach in pores and form a dynamically changing flow path. We define detachment that occurs far from the boundary of the flow path (with a distance greater than 200 μm) as internal detachment and detachment that occurs at the boundary of the flow path as external detachment. To understand the mechanism of biofilm detachment, we study the detachment behaviors of the Bacillus subtilis biofilm in a porous medium in a microfluidic device, where Bacillus subtilis strain is triple fluorescent labeled, which can represent three main phenotypes during the biofilm formation: motile cells, matrix-producing cells, and spores. We find that slow small-scale internal detachment occurs in regions with very few motile cells and matrix-producing cells, and bacterial movement in these areas is disordered. The increase in the number of matrix-producing cells induces clogging, and after clogging, the rapid detachment of the bulk internal biofilm occurs due to the increased pressure difference at the inlet and outlet. When both internal and external detachments occur simultaneously, the number of matrix-producing cells in the internal detachment area is 2.5 times that in the external detachment area. The results indicate that biofilm detachment occurs in areas with fewer matrix-producing cells, as matrix-producing cells can help resist detachment by secreting extracellular polymeric substances (EPSs).

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3