Affiliation:
1. Department of Mathematics, BITS Pilani , Pilani Campus, Pilani 333031, Rajasthan, India
Abstract
The present work highlights the reverse side of the same ecological coin by considering the counter-attack of prey on immature predators. We assume that the birth rate of prey is affected by the fear of adult predators and its carry-over effects (COEs). Next, we introduce two discrete delays to show time lag due to COEs and fear-response. We observe that the existence of a positive equilibrium point and the stability of the prey-only state is independent of fear and COEs. Furthermore, the necessary condition for the co-existence of all three species is determined. Our system experiences several local and global bifurcations, like, Hopf, saddle-node, transcritical, and homoclinic bifurcation. The simultaneous variation in the attack rate of prey and predator results in the Bogdanov–Takens bifurcation. Our numerical results explain the paradox of enrichment, chaos, and bi-stability of node-focus and node-cycle types. The system, with and without delay, is analyzed theoretically and numerically. Using the normal form method and center manifold theorem, the conditions for stability and direction of Hopf-bifurcation are also derived. The cascade of predator attacks, prey counter-attacks, and predator defense exhibit intricate dynamics, which sheds light on ecological harmony.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献