Learning Koopman eigenfunctions of stochastic diffusions with optimal importance sampling and ISOKANN

Author:

Sikorski A.12ORCID,Ribera Borrell E.12ORCID,Weber M.1ORCID

Affiliation:

1. Zuse Institute Berlin 1 , 14195 Berlin, Germany

2. Institute of Mathematics, Freie Universität Berlin 2 , 14195 Berlin, Germany

Abstract

The dominant eigenfunctions of the Koopman operator characterize the metastabilities and slow-timescale dynamics of stochastic diffusion processes. In the context of molecular dynamics and Markov state modeling, they allow for a description of the location and frequencies of rare transitions, which are hard to obtain by direct simulation alone. In this article, we reformulate the eigenproblem in terms of the ISOKANN framework, an iterative algorithm that learns the eigenfunctions by alternating between short burst simulations and a mixture of machine learning and classical numerics, which naturally leads to a proof of convergence. We furthermore show how the intermediate iterates can be used to reduce the sampling variance by importance sampling and optimal control (enhanced sampling), as well as to select locations for further training (adaptive sampling). We demonstrate the usage of our proposed method in experiments, increasing the approximation accuracy by several orders of magnitude.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Reference15 articles.

1. Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times;J. Eur. Math. Soc.,2004

2. W. Huisinga , “Metastability of Markovian systems a transfer operator based approach in application to molecular dynamics,” Ph.D. thesis, Fachbereich Mathematik und Informatik, FU Berlin, 2001.

3. The Monte Carlo computation error of transition probabilities;Stat. Probab. Lett.,2016

4. ISOKANN: Invariant subspaces of Koopman operators learned by a neural network;J. Chem. Phys.,2020

5. A koopman framework for rare event simulation in stochastic differential equations;J. Comput. Phys.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3