Investigating the role of dispersion corrections and anharmonic effects on the phase transition in SrZrS3: A systematic analysis from AIMD free energy calculations

Author:

Jaykhedkar Namrata1ORCID,Bystrický Roman12ORCID,Sýkora Milan1ORCID,Bučko Tomáš23ORCID

Affiliation:

1. Laboratory of Advanced Materials, Comenius University 1 , Ilkovičova 6, 84104 Bratislava, Slovakia

2. Institute of Inorganic Chemistry, Slovak Academy of Sciences 2 , Dúbravská Cesta 9, 84236 Bratislava, Slovakia

3. Department of Physical and Theoretical Chemistry, Comenius University 3 , Ilkovičova 6, 84104 Bratislava, Slovakia

Abstract

A thermally driven needle-like (NL) to distorted perovskite (DP) phase transition in SrZrS3 was investigated by means of ab initio free energy calculations accelerated by machine learning. As a first step, a systematic screening of the methods to include long-range interactions in semilocal density functional theory Perdew–Burke–Ernzerhof calculations was performed. Out of the ten correction schemes tested, the Tkatchenko–Scheffler method with iterative Hirshfeld partitioning method was found to yield the best match between calculated and experimental lattice geometries, while predicting the correct order of stability of NL and DP phases at zero temperature. This method was then used in free energy calculations, performed using several approaches, so as to determine the effect of various anharmonicity contributions, such as the anisotropic thermal lattice expansion or the thermally induced internal structure changes, on the phase transition temperature (TNP→DP). Accounting for the full anharmonicity by combining the NPT molecular dynamics data with thermodynamic integration with harmonic reference provided our best estimate of TNL→DP = 867 K. Although this result is ∼150 K lower than the experimental value, it still provides an improvement by nearly 300 K compared to the previous theoretical report by Koocher et al. [Inorg. Chem. 62, 11134–11141 (2023)].

Funder

Slovak Research and Development Agancy

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3