Effect of thermal nonequilibrium on the shock interaction mechanism for carbon dioxide mixtures on double-wedge geometries

Author:

Garbacz Catarina1ORCID,Morgado Fábio1ORCID,Fossati Marco1ORCID

Affiliation:

1. Aerospace Centre, University of Strathclyde, Glasgow G1 1XQ, United Kingdom

Abstract

The effect of thermal nonequilibrium on shock interactions of carbon dioxide (CO2) hypersonic flows is investigated. Given the relatively low characteristic vibrational temperature of the CO2 molecule, it is expected that excited vibrational modes play a significant role in the physics of shock/shock and shock/boundary layer interactions. The shock interference mechanism resulting from a CO2-dominated flow over different double-wedge geometries is investigated by numerically solving the Navier–Stokes equations within the framework of a two-temperature model that considers translational energy–vibrational energy transfer. To assess the impact of vibrational relaxation, a comparative assessment of the patterns obtained with three thermo-physical models is presented, with the two-temperature model flow pattern being compared to thermally perfect and perfect ideal gas ones. Results obtained with the two-temperature model show that increasing the aft angle significantly enlarges the separated region in the compression corner and generates numerous secondary shock waves and shear layers. Peaks of heat flux and pressure occur along the surface due to boundary layer reattachment downstream of the compression corner, except for the case of the higher angle, which results in the largest peaks due to shock impingement. Different assumptions on the excitation of vibrational modes are shown to largely influence the size of the recirculation bubble in the compression corner, shock interaction mechanism, and surface loads. The more energy transferred to the vibrational mode, the lower post-shock temperatures are obtained, which tends to reduce the post-shock density, leading to weaker shock interactions characterized by delayed onsets of separation, reduced separation regions, and smaller standoff distances.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3