Large third-order optical nonlinearities of two-dimensional CsPbBr3 nanoplatelets

Author:

Huang Ruiqin1,Kang Enze1,Gao Han1,Guo Renbo1,Hu Qingsong2,Han Yibo1ORCID

Affiliation:

1. Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

2. Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China

Abstract

Metal halide perovskites show considerable optical nonlinearity and could be used for cost-effective nonlinear optical devices if their nonlinear susceptibilities can be improved. Here, we report large optical nonlinearity, including third-order nonlinear absorption, refraction, and two-photon absorption excited luminescence, of CsPbBr3 nanoplatelets with a thickness of two or three atomic layers and a plane size of about 60 nm. Specifically, the nonlinear absorption was mainly induced by two-photon absorption at low incident powers, and the nonlinear absorption cross section reached 2.15 × 107 GM. It is two orders of magnitude larger than that of CsPbBr3 nanocrystals, which makes them an ideal optical limiting material. Furthermore, the nanoplatelets exhibited large self-phase modulation-induced nonlinear refraction, and the figures of merit W and T satisfied W >1 and T <1, which allow for optical switching. The large optical nonlinearity of CsPbBr3 nanoplatelets provides a basis for multifunctional applications in nonlinear optical devices.

Funder

National Natural Science Foundation of China

Doctoral Research Foundation Project of Hubei University of Arts and Science

Scientific Research Cultivating Project of Hubei University of Arts and Science

Project of Hubei University of Arts and Science

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3