Affiliation:
1. Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
2. Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
Abstract
Metal halide perovskites show considerable optical nonlinearity and could be used for cost-effective nonlinear optical devices if their nonlinear susceptibilities can be improved. Here, we report large optical nonlinearity, including third-order nonlinear absorption, refraction, and two-photon absorption excited luminescence, of CsPbBr3 nanoplatelets with a thickness of two or three atomic layers and a plane size of about 60 nm. Specifically, the nonlinear absorption was mainly induced by two-photon absorption at low incident powers, and the nonlinear absorption cross section reached 2.15 × 107 GM. It is two orders of magnitude larger than that of CsPbBr3 nanocrystals, which makes them an ideal optical limiting material. Furthermore, the nanoplatelets exhibited large self-phase modulation-induced nonlinear refraction, and the figures of merit W and T satisfied W >1 and T <1, which allow for optical switching. The large optical nonlinearity of CsPbBr3 nanoplatelets provides a basis for multifunctional applications in nonlinear optical devices.
Funder
National Natural Science Foundation of China
Doctoral Research Foundation Project of Hubei University of Arts and Science
Scientific Research Cultivating Project of Hubei University of Arts and Science
Project of Hubei University of Arts and Science
Subject
Physics and Astronomy (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献