TMDs as a platform for spin liquid physics: A strong coupling study of twisted bilayer WSe2

Author:

Kiese Dominik1ORCID,He Yuchi2ORCID,Hickey Ciarán1ORCID,Rubio Angel345ORCID,Kennes Dante M.23ORCID

Affiliation:

1. Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany

2. Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Information Technology, 52056 Aachen, Germany

3. Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany

4. Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, New York 10010, USA

5. Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU, 20018 San Sebastián, Spain

Abstract

The advent of twisted moiré heterostructures as a playground for strongly correlated electron physics has led to a plethora of experimental and theoretical efforts seeking to unravel the nature of the emergent superconducting and insulating states. Among these layered compositions of two-dimensional materials, transition metal dichalcogenides are now appreciated as highly tunable platforms to simulate reinforced electronic interactions in the presence of low-energy bands with almost negligible bandwidth. Here, we focus on the twisted homobilayer WSe2and the insulating phase at half-filling of the flat bands reported therein. More specifically, we explore the possibility of realizing quantum spin liquid (QSL) physics on the basis of a strong coupling description, including up to second-nearest neighbor Heisenberg couplings J1and J2as well as Dzyaloshinskii–Moriya (DM) interactions. Mapping out the global phase diagram as a function of an out-of-plane displacement field, we indeed find evidence for putative QSL states, albeit only close to SU(2) symmetric points. In the presence of finite DM couplings and XXZ anisotropy, long-range order is predominantly present with a mix of both commensurate and incommensurate magnetic phases.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3