Dynamic transformation of bio-inspired single-chain nanoparticles at interfaces

Author:

Hilburg Shayna L.1ORCID,Jin Tianyi2ORCID,Alexander-Katz Alfredo1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Massachusetts Institute of Technology 1 , Cambridge, Massachusetts 02139, USA

2. Department of Chemical Engineering, Massachusetts Institute of Technology 2 , Cambridge, Massachusetts 02139, USA

Abstract

The interfacial behavior of macromolecules dictates their intermolecular interactions, which can impact the processing and application of polymers for pharmaceutical and synthetic use. Using molecular dynamics simulations, we observe the evolution of a random heteropolymer in the presence of liquid–liquid interfaces. The system of interest forms single-chain nanoparticles through hydrophobic collapse in water, lacking permanent crosslinks and making their morphology mutable in new environments. Complex amphiphilic polymers are shown to be capable of stabilizing high interfacial tension water–hexane interfaces, often unfolding to maximize surface coverage. Despite drastic changes to polymer conformation, monomer presence in the water phase is generally maintained and most changes are due to increased hydrophobic solvent exposure toward the oil phase. These results are then compared to the behavior at the water–graphene interface, where the macromolecules adsorb but do not remodel. The polymer’s behavior is shown to depend significantly on both its own amphiphilic character and the deformability of the interface.

Funder

Defense Threat Reduction Agency

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3