Affiliation:
1. Department of Mechanical Engineering, Qazvin Branch, Islamic Azad University 1 , Qazvin, Iran
2. Mechanical Engineering Department, Amirkabir University of Technology 2 , Tehran, Iran
Abstract
Optimal thermo-economic integration of renewable energy sources with multi-generation energy systems is a prime research topic today. The present study proposes a multi-criteria evaluation method of such integration, based on combined heating and power (CHP), and combined cooling and power (CCP) scenarios, for three different solar intensities. Three novel solar-driven tri-generation systems are selected. They include different organic Rankine cycle (ORC) architectures and a Kalina cycle system (KCS) and a double-effect absorption refrigeration cycle as bottoming cycles. Evaluation of the tri-generation systems, both with and without the KCS system, indicates a performance improvement of up to 23% in various thermoeconomic characteristics when the KCS system is present. Selection of the suitable tri-generation system for each condition and optimization of the working fluid are carried out based on a multi-attribute decision-making method. P-xylene is found as the optimal organic working fluid for ORC and ORC (ORC integrated with internal heat exchanger) based systems, and benzene for the regenerative ORC-based system in both CHP and CCP scenarios. Multi-criteria analysis shows that ORC-based system outperforms other systems with net outranking flow of 0.44 (0.39) for CHP (CCP) application. The optimal configuration gives 95.6 M$ and 1.99 years for net present value and dynamic payback period, and 83.03% and 34.55% for energy and exergy efficiencies, respectively.
Subject
Renewable Energy, Sustainability and the Environment