Affiliation:
1. James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
Abstract
The quantum matter synthesizer (QMS) is a new quantum simulation platform in which individual particles in a lattice can be resolved and re-arranged into arbitrary patterns. The ability to spatially manipulate ultracold atoms and control their tunneling and interactions at the single-particle level allows full control of a many-body quantum system. We present the design and characterization of the QMS, which integrates into a single ultra-stable apparatus a two-dimensional optical lattice, a moving optical tweezer array formed by a digital micromirror device, and site-resolved atomic imaging. We demonstrate excellent mechanical stability between the lattice and tweezer array with relative fluctuations below 10 nm, diffraction-limited imaging at a resolution of 655 nm, and high-speed real-time control of the tweezer array at a 2.52 kHz refresh rate, which will be adopted to realize fast rearrangement of atoms. The QMS also features new technologies and schemes, such as nanotextured anti-reflective windows and all-optical long-distance transport of atoms.
Funder
U.S. Department of Energy
National Science Foundation
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献