Affiliation:
1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
2. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract
Droplet splitting is a fascinating interfacial phenomenon, which shows great potential in applications such as fluid dispending and liquid spraying. Splitting behaviors of droplet impact on structured superhydrophobic surfaces are highly transient and complex, but the underlying mechanism is far from clear. Here, we report the splitting dynamics on ridged superhydrophobic surfaces through experimental and theoretical investigations. As the Weber number increases, three splitting modes appear in sequence: non-splitting, departure splitting, and contact splitting. Based on the movement of the liquid film behavior on the ridge along the axial direction, the splitting time consists of durations of three stages: axial spreading, axial retraction, and oscillation retraction, and it decreases with the increasing Weber number. A theoretical model is further established to predict the splitting time, where the law of the axial spreading and retraction is revealed. Splitting dynamics can be regulated by the geometric shape of the ridge. Droplet splitting is inhibited on the rectangular ridge, while the splitting time and contact time are effectively reduced on the semi-cylindrical and triangular ridges. This work is expected to provide fundamental support for diverse applications related to droplet splitting and offer guidance for the design of superhydrophobic surfaces.
Funder
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献