A fractal power-law approach for investigating the interactions between reservoir microstructure and gas migration

Author:

Ye Dayu12ORCID,Liu Guannan123ORCID,Zhou Jianhua3,Yang Tingting12ORCID,Cheng Gaojie12,Fan Shudi12ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

2. Mechanics and Civil Engineering Institute, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

3. School of Qiulu Transportation, Shandong University, Jinan 250000, Shandong, China

Abstract

As one of the most significant clean energy sources, the migration characteristics and extraction processes of coalbed methane (CBM) have been extensively studied. The structural distribution and evolutionary characteristics of reservoir fractures, as the main conduit for gas migration, significantly affect the permeability and gas production. However, few models have been able to quantitatively and accurately explore reservoir micro–macro interactions under coupled thermal-fluid–solid effects. This work develops a new highly coupled model based on the widely adopted power-law function to quantify reservoir thermal conduction effect, gas pressure evolution, reservoir deformation, in situ stress, the adsorption–desorption effect, and reservoir microstructure evolution. Three parameters are adopted to quantitatively characterize the reservoir structure: (1) fracture power index [Formula: see text] (to characterize the fracture density), (2) fracture length ratio rf (to characterize the fracture size), and (3) the maximum fracture length l. The results demonstrate that the fractal network is a special kind of network in the power-law length distribution. The proposed power-law seepage model is able to accurately characterize the evolution of reservoir microstructure and the impact of microevolution on extraction under multi-field coupling effects, compared to the traditional power-law model. The proposed model can provide a good theoretical and practical support for the study of CBM migration and extraction.

Funder

MOE | Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3