Wavelength modulation laser-induced fluorescence for plasma characterization

Author:

Romadanov I.1ORCID,Raitses Y.1ORCID,Smolyakov A.2ORCID

Affiliation:

1. Princeton Plasma Physics Laboratory 1 , Princeton, New Jersey 08543, USA

2. Department of Physics and Engineering Physics, University of Saskatchewan 2 , Saskatoon, Saskatchewan S7N 5E2, Canada

Abstract

Laser-Induced Fluorescence (LIF) spectroscopy is an essential tool for probing ion and atom velocity distribution functions (VDFs) in complex plasmas. VDFs carry information about the kinetic properties of species that is critical for plasma characterization. Accurate interpretation of these functions is challenging due to factors such as multicomponent distributions, broadening effects, and background emissions. Our research investigates the use of Wavelength Modulation (WM) LIF to enhance the sensitivity of VDF measurements. Unlike standard Amplitude Modulation (AM) methods, WM–LIF measures the derivative of the LIF signal. This approach makes variations in VDF shape more pronounced. VDF measurements with WM–LIF were investigated with both numerical modeling and experimental measurements. The developed model enables the generation of both WM and AM signals, facilitating comparative analysis of fitting outcomes. Experiments were conducted in a weakly collisional argon plasma with magnetized electrons and non-magnetized ions. Measurements of the argon ion VDFs employed a narrow-band tunable diode laser, which scanned the 4p4D7/2–3d4F9/2 transition centered at 664.553 nm in vacuum. A lock-in amplifier detected the second harmonic WM signal, which was generated by modulating the laser wavelength with an externally controlled piezo-driven mirror of the diode laser. Our findings indicate that the WM–LIF signal is more sensitive to fitting parameters, allowing for better identification of VDF parameters such as the number of distribution components, their temperatures, and velocities. In addition, WM–LIF can serve as an independent method to verify AM measurements and is particularly beneficial in environments with substantial light noise or background emissions, such as those involving thermionic cathodes and reflective surfaces.

Funder

Princeton Plasma Physics Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3