Tutorial: The equations of electron emission and their evaluation

Author:

Jensen Kevin L.1ORCID

Affiliation:

1. IREAP, University of Maryland , College Park, Maryland 20740, USA

Abstract

Electron emission and transport through and over potential barriers is an essential process requiring modeling and simulation to meet the design needs and characterization of an exceedingly broad range of technologically important devices and processes. The simulation and description of thermal, field, and photoemission, and the related concerns of space–charge affected electron flow, often make use of specialized formulations developed in the early days of quantum mechanics. Advancements in the utilization of electron sources and particularly the simulation of devices and applications using advanced particle-in-cell and trajectory methods for beam optics codes create a strong need for a pedagogical account of the emission models to ensure correct numerical evaluation of their equations. This Tutorial starts from simple phenomenological accounts and progressively builds to comprehensive models emphasizing straightforward and often rapid calculation. It recommends formulations to supplant the canonical Richardson–Laue–Dushman (thermal), Fowler–Nordheim (field), Fowler–DuBridge (photo), and Baroody (secondary) equations and provides a useful formulation of space–charge affected flow commonly described by the Child–Langmuir relation that takes into account cathode dependence on surface field.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3