Affiliation:
1. Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
Abstract
The lattice Boltzmann (LB) method intrinsically links to the Boltzmann equation with the Bhatnagar–Gross–Krook collision operator; however, it has been questioned to be able to simulate noncontinuum bounded gas flows at the micro- and nanoscale, where gas moves at a low speed but has a large Knudsen number. In this article, this point has been verified by simulating Couette flows at large Knudsen numbers (e.g., [Formula: see text] and [Formula: see text]) through use of the linearized LB models based on the popular half-range Gauss–Hermite quadrature. The underlying cause for the poor accuracy of these conventional models is analyzed in the light of the numerical evaluation of the involved Abramowitz functions. A different thought on velocity discretization is then proposed using the Gauss–Legendre (GL) quadrature. Strikingly, the resulting GL-based LB models have achieved high accuracy in simulating Couette flows, Poiseuille flows, and lid-driven cavity flows in the strong transition and even free molecular flow regimes. The numerical study in this article reveals an essentially distinct but workable way in constructing the LB models for simulating micro- and nanoscale low-speed gas flows with strong noncontinuum effects.
Funder
Zhejiang Provincial Natural Science Foundation of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献