Laser-induced coherent longitudinal acoustics phonons in thin films observed by ultrafast optical reflectivity and ultrafast x-ray diffraction

Author:

Yu Junxiao1ORCID,Zhang Haijuan12ORCID,Lv Zefang1ORCID,Chen Conglong1ORCID,Li Runze3ORCID,Zhai Xiaofang3ORCID,Chen Jie1ORCID,Rentzepis Peter M.4ORCID

Affiliation:

1. Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), School of Physics and Astronomy, Shanghai Jiao Tong University 1 , Shanghai 200240, China

2. School of Mathematics, Physics and Statistics, Shanghai Polytechnic University 2 , Shanghai 201209, China

3. School of Physical Science and Technology, ShanghaiTech University 3 , Shanghai 201210, China

4. Department of Electrical and Computer Engineering, Texas A&M University 4 , College Station, Texas 77843, USA

Abstract

Femtosecond laser excitation of crystal materials can produce coherent longitudinal acoustic phonons (CLAPs), which possess the capability to interact with various quasiparticles and influence their dynamics. The manipulation of CLAPs' behavior is thus of significant interest for potential applications, particularly in achieving ultrafast modulations of material properties. In this study, we present our findings on the propagation of laser-induced CLAPs at thin-film interfaces and heterojunctions using ultrafast optical reflectivity and ultrafast x-ray diffraction measurements. We observe that CLAPs can efficiently propagate from a LaMnO3 thin-film to its SrTiO3 substrate due to the matching of their acoustic impedance, and the oscillation period increases from 54 to 105 GHz. In contrast, in ultrafast x-ray diffraction experiments, we discover that CLAPs are partially confined within an Au (111) thin film due to the mismatch of acoustic impedance with the substrates, leading to an oscillation period of 122 ps. However, interestingly, when examining La0.7Ca0.175Sr0.125MnO3/Ba0.5Sr0.5TiO3 bilayers, no oscillations are observed due to the favorable impedance matching between the layers. Our findings demonstrate that acoustic impedance can serve as an effective means to control coherent phonons in nanometer-thin films and may also play a crucial role in phonon engineering at interfaces or heterostructures.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Plan Of Shanghai Science and Technology Commission

Shanghai Rising-Star Program

Air Force Office of Scientific Research

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3