Drastic enhancement of stable and fast domain wall motion in GdFe nanowires through laser-annealing treatment at wire edges

Author:

Mohammadi Mojtaba1ORCID,Miyose Yamato1ORCID,Sumi Satoshi1ORCID,Tanabe Kenji1ORCID,Awano Hiroyuki1ORCID

Affiliation:

1. Memory Engineering Laboratory, Toyota Technological Institute , Nagoya 468-8511, Japan

Abstract

One of the key challenges in racetrack memory (RM) technology is achieving stable and high velocities for domain walls (DWs) while maintaining low power consumption. In our study, we propose a novel laser-annealing (LA) process to modify wire edges for a smoother DW movement along the nanowire. In this regard, a film stack of Pt (5 nm)/Gd26Fe74(20 nm)/SiN(10 nm) was deposited by magnetron sputtering. The DW velocity in the wire was measured by applying single voltage pulses and then observing the DW motion using a Kerr microscope. The current-induced domain walls motion measurements have shown that the LA process significantly enhances the velocity of DW motion. The LA of both edges of the nanowire results in a threefold increase in DW velocity compared to non-LA conditions. Further experiments illustrated that the DW velocity remains stable for the laser-annealed condition across a wide range of applied currents, spanning from 3 × 1011 to 7 × 1011 A/m2. Additionally, our investigation into the magnetic characteristics of laser-annealed nanowire regions exhibited a notable reduction of Hc at the laser-annealed edges. This decrease in Hc indicates greater ease in manipulating the material’s magnetization, which is essential for efficient DW motion. Furthermore, we explored the influence of LA on the Dzyaloshinskii–Moriya Interaction (DMI) field. The DMI finding underscores the strong correlation between DMI fields and DW speed. This achievement, i.e. the stability and consistency of the domain’s velocity (as the components of an RM) in a wide range of applied current, is significant progress in the field of operation and industrialization of RM.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3