Anomaly classification by inserting prior knowledge into a max-tree based method for divertor hot spot characterization on WEST tokamak

Author:

Gorse Valentin1ORCID,Mitteau Raphaël1ORCID,Marot Julien2

Affiliation:

1. CEA, IRFM 1 , F-13108 Saint-Paul-Lez-Durance, France

2. Aix-Marseille Université, CNRS, Ecole Centrale Marseille, Institut Fresnel 2 , 13013 Marseille, France

Abstract

The divertor of WEST (W Environment in Steady-state Tokamak) is the main component for plasma control and exhaust. It receives high heat fluxes, which can cause damage to plasma facing units above the allowable heat flux. Improving the operation safety on the actively cooled tungsten divertor is being researched in place at WEST, toward providing divertor monitoring solution for ITER. Divertor operation safety relies on detecting, monitoring, and classifying all hot spots on the divertor surface using infrared (IR) cameras. In this paper, a method based on max-tree representation and attributes of IR images is used to classify normal from abnormal strikelines on the divertor. The proposed method requires only high-level prior knowledge of abnormal temperatures and divertor structure but does not require any labeled data, unlike existing methods, such as support vector machines (SVMs) or convolutional neural networks (CNNs). The max-tree classifier method is tested on real IR images from the WEST tokamak and shows that 88% of hot spots are accurately classified with a small enough calculation duration that can be performed between two pulses.

Funder

EUROfusion

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3