Thermite and intermetallic projectiles examined experimentally in air and inert gas environments

Author:

Croessmann Charles Luke1ORCID,Cagle Colton1ORCID,Dube Pascal2ORCID,Abraham Joseph3,Altman Igor4ORCID,Pantoya Michelle L.1ORCID

Affiliation:

1. Mechanical Engineering Department, Texas Tech University, Lubbock, Texas 79409-1021, USA

2. Matsys, Inc., Sterling, Virginia 20164, USA

3. Karagozian & Case Inc., Glendale, California 91203, USA

4. Combustion Sciences and Propulsion Branch, Naval Air Warfare Center Weapons Division, China Lake, California 93555, USA

Abstract

Intermetallic (aluminum and zirconium) and thermite (aluminum and molybdenum trioxide) projectiles were launched using a high velocity impact ignition testing system. The experiments were designed to simulate reactivity in high (argon) and low (air) altitude environments. The projectiles were launched into a chamber that included a steel target plate for projectile penetration before impacting a rear witness plate. The chamber was semi-sealed and instrumented for quasi-static pressure data. The results provide an understanding of energy release from the projectile materials and of the environmental influence on performance. The transient pressure traces provide insight into reaction kinetics. A bifurcation in transient pressure rise was an indication of a shift in reaction kinetics from the inherent reactive material to metal oxidation with the environment. The bifurcation was delayed by about 0.15 ms for the intermetallic relative to the thermite, evidence that the thermite reaction proceeded faster upon impact than the intermetallic. The two-step process (impact ignition of the reactive material followed by metal oxidation) was shown to produce higher energy conversion efficiencies than projectiles composed of pure fuel (i.e., aluminum) reported previously. Both reactive materials showed energy conversion efficiencies greater than 30% (for air) and 50% (for argon), and an explanation of underestimated efficiency and energy losses is provided. These results have implications for advancing formulations for ballistic applications. Structural reactive materials can be used to modify the effective reactivity of metal-containing formulations in varied atmospheric environments.

Funder

Office of Naval Research

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3