Aging or DEAD: Origin of the non-monotonic response to weak self-propulsion in active glasses

Author:

Klongvessa Natsuda12ORCID,Ybert Christophe2ORCID,Cottin-Bizonne Cécile2ORCID,Kawasaki Takeshi3ORCID,Leocmach Mathieu2ORCID

Affiliation:

1. School of Physics, Center of Excellence in Advanced Functional Materials, Institute of Science, Suranaree University of Technology, 3000 Nakhon Ratchasima, Thailand

2. Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France

3. Department of Physics, Nagoya University, 464-8602 Nagoya, Japan

Abstract

Among amorphous states, glass is defined by relaxation times longer than the observation time. This nonergodic nature makes the understanding of glassy systems an involved topic, with complex aging effects or responses to further out-of-equilibrium external drivings. In this respect, active glasses made of self-propelled particles have recently emerged as a stimulating systems, which broadens and challenges our current understanding of glasses by considering novel internal out-of-equilibrium degrees of freedom. In previous experimental studies we have shown that in the ergodicity broken phase, the dynamics of dense passive particles first slows down as particles are made slightly active, before speeding up at larger activity. Here, we show that this nonmonotonic behavior also emerges in simulations of soft active Brownian particles and explore its cause. We refute that the deadlock by emergence of active directionality model we proposed earlier describes our data. However, we demonstrate that the nonmonotonic response is due to activity enhanced aging and thus confirm the link with ergodicity breaking. Beyond self-propelled systems, our results suggest that aging in active glasses is not fully understood.

Funder

Japan Society for the Promotion of Science

Thailand Science Research and Innovation

National Science, Research and Innovation Fund of Thailand

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3