Opto-mechanical fiber sensing with optical and acoustic cladding modes

Author:

Zadok Avi1ORCID,Zehavi Elad1ORCID,Bernstein Alon1ORCID

Affiliation:

1. Faculty of Engineering and Institute for Nano-Technology and Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel

Abstract

Optical fibers are an excellent sensor platform. However, the detection and analysis of media outside the cladding and coating of standard fibers represent a long-standing challenge: light that is guided in the single optical core mode does not reach these media. Cladding modes help work around this difficulty, as their transverse profiles span the entire cross-section of the fiber cladding and reach its outer boundary. In this tutorial, we introduce and discuss in detail two recent advances in optical fiber sensors that make use of cladding modes. Both concepts share optomechanics as a common underlying theme. First, we describe a spatially continuous distributed analysis using the optical cladding modes of the fiber. Light is coupled to these modes using Brillouin dynamic gratings, which are index perturbations associated with acoustic waves in the core that are stimulated by light. Unlike permanent gratings, which are routinely used to couple light with cladding modes, Brillouin dynamic gratings may be switched on and off at will and can be confined to short fiber sections at arbitrary locations in a random-access manner. Second, we present the extension of the cladding mode sensor concept to include acoustic rather than optical modes. The acoustic cladding modes may be stimulated and monitored by guided light in the single core mode, and their linewidths are modified by the elastic properties of surrounding media. The principles and analyses of both concepts are provided in detail, alongside examples of experimental setups and results.

Funder

HORIZON EUROPE European Research Council

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Reference94 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3