Effects of Er atoms on graphitization process and structural defects for epitaxial graphene

Author:

Duan Yong1ORCID,Kong Wenxia1,Zhang Jinzhe1,Wang Jianxin1,Cai Qun1ORCID

Affiliation:

1. State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China

Abstract

Thermal decomposition of SiC at high temperature usually brings about excessively fast Si sublimation and a very rough surface. In order to fabricate high-quality homogeneous epitaxial graphene on a SiC(0001) substrate, highly reactive erbium atoms are employed in this work. Scanning tunneling microscopy and Raman spectroscopy have been utilized to investigate the modulations of Er atoms on graphitization evolution and structural defects for graphene after annealing durations. Experimental results show that Er atoms pre-deposited on clean substrates can definitely enhance the surface graphitization of SiC and make graphene grow in a controllable way. The existence of Er layer is believed to break Si–C bonds at low temperature and to decrease the Si sublimate rate. It is also demonstrated that Er atoms can modify the type of structural defects in graphene, and the areal density of flower defects increases to 1.22 × 1012 cm−2, quadrupling that in pristine graphene. This work puts forward a fabrication method for epitaxial graphene with flower defects in high density and will enlighten some future applications of graphene in nanoelectronics, electron energy filtering, and chemical catalysis.

Funder

Natural Science Foundation of Shanghai Science and Technology Committee

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3