Twin peaks: Matrix isolation studies of H2S·amine complexes shedding light on fundamental S–H⋯N bonding

Author:

Graneri Matthew H. V.1ORCID,Spagnoli Dino1ORCID,Wild Duncan A.12ORCID,McKinley Allan J.1ORCID

Affiliation:

1. School of Molecular Sciences, University of Western Australia 1 , 35 Stirling Hwy, Crawley, WA 6009, Australia

2. School of Science, Edith Cowan University 2 , 270 Joondalup Drive, Joondalup, WA 6027, Australia

Abstract

Noncovalent bonding between atmospheric molecules is central to the formation of aerosol particles and cloud condensation nuclei and, consequently, radiative forcing. While our understanding of O–H⋯B interactions is well developed, S–H⋯B hydrogen bonding has received far less attention. Sulfur- and nitrogen-containing molecules, particularly amines, play a significant role in atmospheric chemistry, yet S–H⋯N interactions are not well understood at a fundamental level. To help characterize these systems, H2S and methyl-, ethyl-, n-propyl-, dimethyl-, and trimethylamine (MA, EA, n-PA, DMA, and TMA) have been investigated using matrix isolation Fourier transform infrared spectroscopy and high-level theoretical methods. Experiments showed that H2S forms hydrogen bonded complexes with each of the amines, with bond strengths following the trend MA ≈ EA ≈ n-PA < TMA ≤ DMA, in line with past experimental work on H2SO4·amine complexes. However, the calculated results indicated that the trend should be MA < DMA < TMA, in line with past theoretical work on H2SO4·amine complexes. Evidence of strong Fermi resonances indicated that anharmonicity may play a critical role in the stabilization of each complex. The theoretical results were able to replicate experiment only after binding energies were recalculated to include the anharmonic effects. In the case of H2SO4·amine complexes, our results suggest that the discrepancy between theory and experiment could be reconciled, given an appropriate treatment of anharmonicity.

Funder

Australian Government Research Training Program Scholarship

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3