Theoretical investigation of braking of tearing mode rotation by resistive walls in ITER

Author:

Fitzpatrick R.1ORCID

Affiliation:

1. Institute for Fusion Studies, Department of Physics, University of Texas at Austin , Austin, Texas 78712, USA

Abstract

The locking of the 2/1 tearing mode to the resistive wall in the ITER tokamak (15 MA inductive scenario 2) is investigated theoretically using a cylindrical asymptotic matching model. The model takes into account the fact that ITER plasmas will effectively be surrounded by two walls; the inner blanket module layer with a time constant of about 23 ms, and the outer vacuum vessel with a time constant of about 380 ms. The model also takes cognizance of the fact that neither the blanket module layer nor the vacuum vessel can be accurately described as “thin” walls (in the ordinarily accepted sense). The model incorporates changes in both the plasma poloidal and the toroidal angular velocity profiles, in response to the electromagnetic braking torque that develops at the rational surface, because it turns out that neoclassical poloidal flow-damping is not strong enough to completely suppress changes in the poloidal velocity. Finally, the model accurately calculates changes in the poloidal and toroidal plasma angular velocity profiles by evolving the full angular equations of motion, taking the electromagnetic braking torque, plasma inertia, plasma viscosity, and poloidal flow-damping into account. The time required for the 2/1 tearing mode to grow from a small amplitude to a sufficient one to lock to the walls is found to be about 3.5 s. The critical full radial island width at which wall locking is triggered is found to be about 9% of the plasma minor radius.

Funder

Fusion Energy Sciences

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3