The influence of cryogenic temperature on the shock structure of impinging under-expanded flow over a convex surface

Author:

Aslani Alireza1ORCID

Affiliation:

1. School of Mechanical Engineering, Eco-friendly Smart Ship Parts Technology Innovation Center, Pusan National University 1 , Busan 46241, South Korea

Abstract

This study comprehensively investigates the effect of cryogenic nozzle inlet temperature on the flow structure and interactions of an under-expanded supersonic jet with a spherical solid surface. A combined experimental and numerical approach was employed to achieve this goal, utilizing high-speed Z-type schlieren visualization and Reynolds-averaged Navier–Stokes simulations with a Redlich–Kwong real gas equation of state. This study is significant as it addresses a relatively unexplored area of research on the flow structure of the cryogenic under-expanded supersonic jet. The study examines the shock pattern and interaction region through varying static inlet temperature (Tin = 178–290 K) and nozzle pressure ratio (NPR 5–14). Additionally, parameters including nozzle exit-to-throat area ratio (A/A* = 1.277), the distance between the sphere and the nozzle (1.5 cm), and the diameter of the sphere (d = 1.5 cm) were considered fixed. The results show that the supersonic jet exhibits a change in shock patterns in the first shock cell concerning the location and width of the Mach disk, accompanied by a shift in the location of the last shock crossing point and the shock plate. The simulation provides a more detailed insight into the flow, indicating a temperature drop to 105 K in the case of the cryogenic nozzle inlet. At such a low temperature, the compressibility factor exhibits a 5% reduction from unity, while in the case of the ambient nozzle inlet, the minimum temperature at the nozzle exit reached 170 K, leading to only a 1% drop in the compressibility factor, which is negligible. It triggers different flow structures concerning the nozzle inlet temperature. These findings can contribute to the complex flow structures of supersonic jets seen in different industrial and scientific fields.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3