Affiliation:
1. Physics Department, İzmir Institute of Technology , Gülbahçe Mah. Urla Izmir 35433, Türkiye
Abstract
In this work, we have studied transmission properties of a photonic crystal-like structure that can be woven into fabrics. An interesting possibility emerges when considering the potential energy savings through suppression of radiation. It is a well-established fact that every object at a finite temperature inherently emits electromagnetic waves. Within the specific context of the human body, radiation takes on a crucial role as a fundamental mechanism governing heat dissipation. Thus, exploring ways to manage or mitigate this radiation could offer innovative approaches to optimize energy consumption and enhance heat regulation. It is well known that a photonic crystal can block electromagnetic energy with a specific frequency that is falling into a photonic bandgap. By using the numerical method called a finite-difference time domain, we have shown that this property of a periodic structure can be used to make textiles to save energy that is used to heat a human body environment. Numerical calculations have shown that by using the proposed photonic crystal structure, 53% of electromagnetic energy is reflected. Although we mainly focused on textiles, it is worth highlighting that the same fundamental principle can be extended to diverse fields; for example, this structure can be integrated with construction materials and effectively function as a radiation heat insulator.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献