Photonic crystal textiles for heat insulation

Author:

Çetin Zebih1ORCID,Tunçtürk Yiğit1ORCID,Sözüer H. Sami1ORCID

Affiliation:

1. Physics Department, İzmir Institute of Technology , Gülbahçe Mah. Urla Izmir 35433, Türkiye

Abstract

In this work, we have studied transmission properties of a photonic crystal-like structure that can be woven into fabrics. An interesting possibility emerges when considering the potential energy savings through suppression of radiation. It is a well-established fact that every object at a finite temperature inherently emits electromagnetic waves. Within the specific context of the human body, radiation takes on a crucial role as a fundamental mechanism governing heat dissipation. Thus, exploring ways to manage or mitigate this radiation could offer innovative approaches to optimize energy consumption and enhance heat regulation. It is well known that a photonic crystal can block electromagnetic energy with a specific frequency that is falling into a photonic bandgap. By using the numerical method called a finite-difference time domain, we have shown that this property of a periodic structure can be used to make textiles to save energy that is used to heat a human body environment. Numerical calculations have shown that by using the proposed photonic crystal structure, 53% of electromagnetic energy is reflected. Although we mainly focused on textiles, it is worth highlighting that the same fundamental principle can be extended to diverse fields; for example, this structure can be integrated with construction materials and effectively function as a radiation heat insulator.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3