High-accuracy realization of temperature fixed and reference points

Author:

Fellmuth Bernd1ORCID,Gaiser Christof1ORCID

Affiliation:

1. Physikalisch-Technische Bundesanstalt (PTB) , Abbestrasse 2-12, 10587 Berlin, Germany

Abstract

The harmonization of international temperature measurements requires the high-accuracy realization of many different temperature reference points. This results from the feature of the intensive measurand temperature that temperatures cannot simply be divided or multiplied. Thus, the points must cover the whole range of interest, at present from 1 mK to a few 1000 K. Furthermore, instruments are necessary for the interpolation between the non-continuous guide values. This led to the establishment of International Temperature Scales (ITS). The ITS prescribe interpolation instruments and assign fixed temperature values to suitable phase transitions without uncertainty. The large temperature range can only be covered by applying very different phase transitions. This includes the classical transitions, namely triple, melting, and freezing points, but also second-order transitions, as superfluid and superconducting ones, and the very new eutectic or peritectic points of metal-carbon compositions. A high-accuracy realization requires a reliable uncertainty estimation. This is, therefore, the central topic of this review. Since a given non-ideal condition of a sample, especially the impurity content, cannot be reproduced as accurate as necessary, the fixed- and reference-point temperatures are defined for ideal substances under ideal conditions. Thus, the estimation of the uncertainty of the realizations must be based on estimating the magnitude of all physical effects influencing the observed phase-transition temperature. The application of this methodology is discussed in the paper as unifying topic independent of the individual problems to be solved. Furthermore, recommendations of the Consultative Committee for Thermometry are summarized, and own experiences are supplemented.

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3