Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. II. Spectra, correlation and nonlinear interactions

Author:

Yu Ming1ORCID,Liu Peng Xin1ORCID,Fu Ya Lu1ORCID,Tang Zhi Gong1,Yuan Xian Xu1ORCID

Affiliation:

1. State Key Laboratory of Aerodynamics, Mianyang 621000, China

Abstract

Wall shear stress, pressure, and heat flux are of significant importance in engineering applications. In this two-part study, we investigate the compressibility effects on wall shear stress, pressure, and heat flux fluctuations in compressible wall-bounded turbulence by exploiting direct numerical simulation databases. In Paper I, we primarily deal with the one-point statistics, whereas in this second part, we report the effects of compressibility on the frequency spectra, wavenumber-frequency spectra of these flow quantities, and the two-point cross-correlations between them. It is found that the scaling laws of the spectra at low and high frequencies are retained as those of incompressible flows, whereas the spectra intensities at mid frequencies increase with the enhancement of compressibility effects, which is identified to be related to the ever-predominating traveling wave packets. These wave packets are convected downstream at the same velocity of [Formula: see text] as that of pressure fluctuations, higher than that of the streaky structures [Formula: see text] ( Ub the bulk velocity), and enhance the space and time cross correlation between wall shear stress, pressure, and heat flux fluctuations. By extracting the envelopes of the traveling wave packets and inspecting the time and space correlations between the envelopes and the streaky structures, we found that the emergence of traveling wave packets comes later than the streaky structures, both in time and space. Based on these observations, we provide a depiction of the physical processes regarding the formation and evolution of the traveling wave packets.

Funder

National Key Research and Development Program of China

Open Project of State Key Lab of Aerodynamics

National Numerical Wind Tunnel Project of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3