Affiliation:
1. Ames National Laboratory, U.S. Department of Energy 1 , Ames, Iowa 50011, USA
2. Department of Physics and Astronomy, Iowa State University 2 , Ames, Iowa 50011, USA
Abstract
Stochastic lattice-gas models provide the natural framework for analysis of the surface diffusion-mediated evolution of crystalline metal nanostructures on the appropriate time scale (often 101–104 s) and length scale. Model behavior can be precisely assessed by kinetic Monte Carlo simulation, typically incorporating a rejection-free algorithm to efficiently handle the broad range of Arrhenius rates for hopping of surface atoms. The model should realistically prescribe these rates, or the associated barriers, for a diversity of local surface environments. However, commonly used generic choices for barriers fail, even qualitatively, to simultaneously describe diffusion for different low-index facets, for terrace vs step edge diffusion, etc. We introduce an alternative Unconventional Interaction–Conventional Interaction formalism to prescribe these barriers, which, even with few parameters, can realistically capture most aspects of behavior. The model is illustrated for single-component fcc metal systems, mainly for the case of Ag. It is quite versatile and can be applied to describe both the post-deposition evolution of 2D nanostructures in homoepitaxial thin films (e.g., reshaping and coalescence of 2D islands) and the post-synthesis evolution of 3D nanocrystals (e.g., reshaping of nanocrystals synthesized with various faceted non-equilibrium shapes back to 3D equilibrium Wulff shapes).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献