Dislocation evolution and hardening of CoCrFeMnNi high entropy alloy under Fe ion irradiation at room temperature and 500 °C

Author:

Zhang Lisong1,Zhang Peng1,Li Na1,Zhang Xiaonan2,Mei Xianxiu1ORCID

Affiliation:

1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology 1 , Dalian 116024, China

2. School of Science, Dalian Jiaotong University 2 , Dalian 116028, China

Abstract

Recently, high entropy alloy (HEA) has become a research hotspot as a new candidate structural material in nuclear reactors due to its good irradiation resistance in swelling and hardening. Focusing on the temperature effect of irradiation damage, this work investigated the influence of irradiation temperature on dislocation evolution and irradiation hardening of HEAs. CoCrFeMnNi HEA was irradiated by high-energy Fe ions at room temperature and 500 °C. It was found that dense small dislocations were produced in the damage attenuation region (i.e., the tail of the ion range) of HEAs after irradiation at room temperature, whereas the irradiation-induced dislocations could not be observed in the damage attenuation region when the irradiation temperature was increased to 500 °C. For the small-sized dislocations, dissociation may occur more easily than long-range migration in HEAs (such as CoCrFeNi systems) due to the inhibition of defect migration and the decrease in defect binding energy, and this order is reversed in pure metals (such as Ni, W). Therefore, at 500 °C irradiation, small dislocations in the damage attenuation region of CoCrFeMnNi HEAs were dissociated before migrating to deeper regions, thereby resulting in the depth of dislocation distribution smaller than the stopping and range of ions in matter-calculated damage stopping depth, unlike the phenomenon in pure metals where dislocations migrated to regions exceeding the calculated depth. In addition, the dislocation density of CoCrFeMnNi HEAs decreased significantly due to the promotion of dissociation and merging of dislocations by elevated temperatures, and the hardening after 500 °C irradiation was less than that after room temperature irradiation.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3