On the channel flow of yield stress fluids with an internal microstructure

Author:

Fedorowicz Kamil1ORCID,Prosser Robert1ORCID

Affiliation:

1. Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester , Manchester M13 9PL, United Kingdom

Abstract

Thin films consisting of polymer solutions are typically produced through a combination of extrusion and shearing processes, where the anisotropic, non-Newtonian solution is deformed and subjected to thermal treatment. This paper investigates the shearing of polymeric thin films by studying the channel flow rheology of polymer solutions that experience yield stress. The material rheology is described by the transversely isotropic fluid (TIF) model, which contains a yield behavior term related to microstructure distortion. Our results show that this distortional stress is able to resist the pressure gradient, and non-trivial stress distributions can exist in the absence of a flow. This represents a significant improvement over existing viscosity-based yield stress models (e.g., the Heschel–Bulkley model). The unyielded state is achieved as the end result of a transient process, where a pressure gradient produces a short-lived flow that ceases when opposing stresses from microstructure distortion are produced. Predictions of the TIF model are compared with the phenomenological Saramito model. Both models are found to predict yielding when a threshold stress is exceeded. In both cases, the velocity profile is Newtonian near the wall, while plug flows are encountered close to the centerline.

Funder

Engineering and Physical Sciences Research Council

Unilever

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3