Hierarchical energy optimization of flywheel energy storage array systems for wind farms based on deep reinforcement learning

Author:

Zhang Zhanqiang123ORCID,Meng Keqilao13ORCID,Li Yu2,Liu Qing13,Wu Huijuan13

Affiliation:

1. College of Energy and Power Engineering, Inner Mongolia University of Technology 1 , Hohhot, Inner Mongolia 010051, China

2. College of Information Engineering, Inner Mongolia University of Technology 2 , Hohhot, Inner Mongolia 010051, China

3. Key Laboratory of Wind Energy and Solar Energy Technology, Ministry of Education 3 , Hohhot 010051, China

Abstract

Due to the volatility and intermittency of renewable energy, injecting large amounts of renewable energy into the grid will have a tremendous impact on the stability and security of the network. In this paper, we propose the hierarchical energy optimization of flywheel energy storage array system (FESAS) applied to smooth the power output of wind farms to realize source-grid-storage intelligent dispatching. The energy dispatching problem of the FESAS is described as a Markov decision process by the actor-critic (AC) algorithm. In order to solve the problems of stability and low sampling efficiency of the AC algorithm, the soft actor-critic (SAC) algorithm, a deep reinforcement learning (DRL) algorithm based on the model-free off-policy method of the maximum entropy framework, is adopted. Furthermore, SAC and prioritized experience replay (PER) are utilized to greatly improve learning efficiency and sample utilization. The experimental results show that SAC-PER has better performance and stability in energy optimization of the FESAS.

Funder

Department of Science and Technology of Inner Mongolia

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3