Spectra and structure functions of the temperature and velocity fields in supergravitational thermal turbulence

Author:

Wang Dongpu1ORCID,Liu Shuang12ORCID,Zhou Quan3ORCID,Sun Chao14ORCID

Affiliation:

1. Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of MoE, and Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

2. Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

3. Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China

4. Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Abstract

We analyze the power spectra and structure functions (SFs) of the temperature and radial velocity fields, calculated in the radial and azimuthal directions, in annular centrifugal Rayleigh–Bénard convection (ACRBC) for Rayleigh number Ra [Formula: see text], Prandtl number Pr = 10.7, and inverse Rossby number [Formula: see text] using the spatial data obtained by quasi-two-dimensional direct numerical simulation. Bolgiano and Obukhov-like (BO59-like) scalings for the energy spectrum in both the azimuthal and radial directions and thermal spectrum in the azimuthal direction are observed. The range of BO59-like scaling becomes wider as Ra increases. At [Formula: see text], it is found that BO59-like scaling [Formula: see text] spans nearly two decades for the energy spectrum calculated in the radial direction. Power-law fittings in the range larger than the Bolgiano scales, the scaling exponents of transverse and longitudinal velocity SFs vs the order coincide with the theoretical prediction of BO59 scaling [Formula: see text] basically. The second-order temperature SFs exhibit a gradual transition from the Obukhov–Corrsin behavior at scales smaller than the Bolgiano scales to the BO59 behavior at scales larger than the Bolgiano scales. The slopes from the third to sixth-order temperature SFs are similar, which is similar to classical Rayleigh–Bénard convection and Rayleigh–Taylor turbulence. The probability density functions (p.d.f.) of temperature fluctuations [Formula: see text] reveal the cold plumes are strong and the p.d.f. in different regions at high Ra are similar. The stronger turbulent-mixing and larger centrifugal buoyancy in ACRBC may result in the BO59-like scaling.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China-Yunnan Joint Fund

Tencent Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3