Photonic topological insulators induced by non-Hermitian disorders in a coupled-cavity array

Author:

Luo Xi-Wang12ORCID,Zhang Chuanwei1ORCID

Affiliation:

1. Department of Physics, The University of Texas at Dallas 1 , Richardson, Texas 75080-3021, USA

2. CAS Key Laboratory of Quantum Information, University of Science and Technology of China 2 , Hefei 230026, China

Abstract

Recent studies of disorder or non-Hermiticity induced topological insulators inject new ingredients for engineering topological matter. Here, we consider the effect of purely non-Hermitian disorders, a combination of these two ingredients, in a 1D coupled-cavity array with disordered gain and loss. Topological photonic states can be induced by increasing gain-loss disorder strength with topological invariants carried by localized states in the complex bulk spectra. The system showcases rich phase diagrams and distinct topological states from Hermitian disorders. The non-Hermitian critical behavior is characterized by the biorthogonal localization length of zero-energy edge modes, which diverges at the critical transition point and establishes the bulk-edge correspondence. Furthermore, we show that the bulk topology may be experimentally accessed by measuring the biorthogonal chiral displacement, which can be extracted from a proper Ramsey interferometer that works in both clean and disordered regions. The proposed coupled-cavity photonic setup relies on techniques that have been experimentally demonstrated and, thus, provides a feasible route toward exploring such non-Hermitian disorder driven topological insulators.

Funder

Air Force Office of Scientific Research

National Science Foundation

Life Sciences Division, Army Research Office

University of Science and Technology of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3