Kinetic Landau-fluid closures of non-Maxwellian distributions

Author:

Fan Kaixuan1ORCID,Xu Xueqiao2ORCID,Zhu Ben2ORCID,Li Pengfei1ORCID

Affiliation:

1. Fusion Simulation Center, Peking University 1 , Beijing 100871, China

2. Lawrence Livermore National Laboratory 2 , Livermore, California 94550, USA

Abstract

New kinetic Landau-fluid closures, based on the cutoff Maxwellian distribution, are derived. A special static case is considered (the frequency ω=0). In the strongly collisional regime, our model reduces to Braginskii's heat flux model, and the transport is local. In the weak collisional regime, our model indicates that the heat flux is non-local and recovers the Hammett–Perkins model while the value of the cutoff velocity approaches to infinity. We compare the thermal transport coefficient χ of Maxwellian, cutoff Maxwellian and super-Gaussian distribution. The results show that the reduction of the high-speed tail particles leads to the corresponding reduction of the thermal transport coefficient χ across the entire range of collisionality, more reduction of the free streaming transport toward the weak collisional regime. In the collisionless limit, χ approaches to zero for the cutoff Maxwellian and the super-Gaussian distribution but remains finite for Maxwellian distribution. χ is complex if the cutoff Maxwellian distribution is asymmetric. The Im(χ) approaches to different convergent values in both collisionless and strongly collisional limit, respectively. It yields an additional streaming heat flux in comparison with the symmetric cutoff Maxwellian distribution. Furthermore, due to the asymmetric distribution, there is a background heat flux q0 though there is no perturbation. The derived Landau-fluid closures are general for fluid moment models, and applicable for the cutoff Maxwellian distribution in an open magnetic field line region, such as the scape-off-layer of Tokamak plasmas, in the thermal quench plasmas during a tokamak disruption, and the super-Gaussian electron distribution function due to inverse bremsstrahlung heating in laser-plasma studies.

Funder

U.S. Department of Energy

National Key Research and Development Program of China

Lawrence Livermore National Laboratory

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning of hidden variables in multiscale fluid simulation;Machine Learning: Science and Technology;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3