Scaling microfluidic throughput with flow-balanced manifolds to simply control devices with multiple inlets and outlets

Author:

Young Katherine M.1ORCID,Shankles Peter G.2,Chen Theresa2,Ahkee Kelly1,Bules Sydney1,Sulchek Todd12ORCID

Affiliation:

1. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA

2. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA

Abstract

Microfluidics can bring unique functionalities to cell processing, but the small channel dimensions often limit the throughput for cell processing that prevents scaling necessary for key applications. While processing throughput can be improved by increasing cell concentration or flow rate, an excessive number or velocity of cells can result in device failure. Designing parallel channels can linearly increase the throughput by channel number, but for microfluidic devices with multiple inlets and outlets, the design of the channel architecture with parallel channels can result in intractable numbers of inlets and outlets. We demonstrate an approach to use multiple parallel channels for complex microfluidic designs that uses a second manifold layer to connect three inlets and five outlets per channel in a manner that balances flow properties through each channel. The flow balancing in the individual microfluidic channels was accomplished through a combination of analytical and finite element analysis modeling. Volumetric flow and cell flow velocity were measured in each multiplexed channel to validate these models. We demonstrate eight-channel operation of a label-free mechanical separation device that retains the accuracy of a single channel separation. Using the parallelized device and a model biomechanical cell system for sorting of cells based on their viability, we processed over 16 × 106 cells total over three replicates at a rate of 5.3 × 106 cells per hour. Thus, parallelization of complex microfluidics with a flow-balanced manifold system can enable higher throughput processing with the same number of inlet and outlet channels to control.

Funder

National Cancer Institute

U.S. Food and Drug Administration

Publisher

AIP Publishing

Subject

Condensed Matter Physics,General Materials Science,Fluid Flow and Transfer Processes,Colloid and Surface Chemistry,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3