Affiliation:
1. Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida , Gainesville, Florida 32611, USA
Abstract
We report on the experimental demonstration of high-performance suspended channel transistors with single- and bilayer (1L and 2L) molybdenum disulfide (MoS2), and on operating them as vibrating channel transistors (VCTs) and exploiting their built-in dynamic electromechanical coupling to read out picoampere (pA) transconduction current directly at the vibrating tones, without frequency conversion or down-mixing, for picometer (pm)-scale motion detection at room temperature. The 1L- and 2L-MoS2 VCTs exhibit excellent n-type transistor behavior with high mobility [150 cm2/(V·s)] and small subthreshold swing (98 mV/dec). Their resonance motions are probed by directly measuring the small-signal drain-source currents (iD). Electromechanical characteristics of the devices are extracted from the measured iD, yielding resonances at f0 = 31.83 MHz with quality factor Q = 117 and f0 = 21.43 MHz with Q = 110 for 1L- and 2L-MoS2 VCTs, respectively. The 2L-MoS2 VCT demonstrates excellent current and displacement sensitivity (Si1/2 = 2 pA/Hz1/2 and Sx1/2 = 0.5 pm/Hz1/2). We demonstrate f0 tuning by controlling gate voltage VG and achieve frequency tunability Δf0/f0 ≈ 8% and resonance frequency change Δf0/ΔVG ≈ 0.53 kHz/mV. This study helps pave the way to realizing ultrasensitive self-transducing 2D nanoelectromechanical systems at room temperature, in all-electronic configurations, for on-chip applications.
Funder
National Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献