Atomic layer self-transducing MoS2 vibrating channel transistors with 0.5 pm/Hz1/2 displacement sensitivity at room temperature

Author:

Yousuf S M Enamul Hoque1ORCID,Feng Philip X.-L.1ORCID

Affiliation:

1. Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida , Gainesville, Florida 32611, USA

Abstract

We report on the experimental demonstration of high-performance suspended channel transistors with single- and bilayer (1L and 2L) molybdenum disulfide (MoS2), and on operating them as vibrating channel transistors (VCTs) and exploiting their built-in dynamic electromechanical coupling to read out picoampere (pA) transconduction current directly at the vibrating tones, without frequency conversion or down-mixing, for picometer (pm)-scale motion detection at room temperature. The 1L- and 2L-MoS2 VCTs exhibit excellent n-type transistor behavior with high mobility [150 cm2/(V·s)] and small subthreshold swing (98 mV/dec). Their resonance motions are probed by directly measuring the small-signal drain-source currents (iD). Electromechanical characteristics of the devices are extracted from the measured iD, yielding resonances at f0 = 31.83 MHz with quality factor Q = 117 and f0 = 21.43 MHz with Q = 110 for 1L- and 2L-MoS2 VCTs, respectively. The 2L-MoS2 VCT demonstrates excellent current and displacement sensitivity (Si1/2 = 2 pA/Hz1/2 and Sx1/2 = 0.5 pm/Hz1/2). We demonstrate f0 tuning by controlling gate voltage VG and achieve frequency tunability Δf0/f0 ≈ 8% and resonance frequency change Δf0/ΔVG ≈ 0.53 kHz/mV. This study helps pave the way to realizing ultrasensitive self-transducing 2D nanoelectromechanical systems at room temperature, in all-electronic configurations, for on-chip applications.

Funder

National Science Foundation

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3