Synthesis of nano-selenium and its effects on germination and early seedling growth of four crop plants

Author:

Huong Nguyen Thanh12ORCID,Tung Do Khanh1ORCID,Ky Vu Hong1ORCID,Nam Pham Hong1ORCID,Ngoc Anh Nguyen Thi12ORCID

Affiliation:

1. Institute of Materials Science, Vietnam Academy of Science and Technology 1 , 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

2. Graduate University of Science and Technology, Vietnam Academy of Science and Technology 2 , 18 Hoang QuocViet, Cau Giay, Hanoi, Vietnam

Abstract

In this work, nano-selenium (NSe) with different shapes (wires, rods, and spherical particles) was synthesized by a wet chemical method. These synthesized products were characterized by x-ray powder diffraction (XRD) analysis, a field emission scanning electron microscope (FE-SEM) with an energy dispersive x-ray analyzer, and Raman spectroscopy. FE-SEM images revealed that nanowires with an average diameter of 30–50 nm and length of 3–5 µm, nanorods with lengths of 400–800 nm and diameters of about 20–50 nm, and spherical-shaped nanoparticles (NPs) with diameters ranging from 40 to 60 nm were successfully synthesized. The XRD and Raman analysis confirmed that all the produced NSe samples exhibited hexagonal single-phase crystalline structure with no impurity phase. All three NSe products (SeNWs, SeNRs, and SeNPs) with a concentration range of 25–150 mg/l were used to investigate the impact of shape and concentration on seed germination and seedling vigor of four different crop species, namely, green bean, okra, wheat, and radish. The results revealed that NSe at low concentrations (≤50 mg/l for SeNWs and ≤100 mg/l for SeNRs and SeNPs) can promote seed germination, plant growth, and development of all the studied crop species. However, NSe can adversely affect the growth of plants at higher concentrations (≥75 mg/l for SeNWs).

Funder

Institute of Materials Science, Vietnam Academy of Science and Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3