Affiliation:
1. IMAPP, Radboud University Nijmegen , Nijmegen, The Netherlands
Abstract
As a direct continuation of Zwart [J. Math. Phys. 64(10), 101701 (2023)], which is built on the work of Müger and Tuset [Indagationes Math. 35(1), 114 (2024)], we reduce the Mathieu conjecture, formulated by Mathieu [Algèbra Non Commutative, Groupes Quantiques et Invariants, edited by Alex, J. and Cauchon, G. (Société Mathématique de France, Reims, 1997), Vol. 2, pp. 263–279], for Sp(N) and G2 to a conjecture involving functions over Rn×(S1)m with n,m∈N0. The proofs rely on Euler-style parametrizations of these groups, a specific version of the KAK decomposition, which we discuss and prove.
Reference14 articles.
1. The octonions;Bull. Am. Math. Soc.,2002
2. On the Euler angles for SU(N);J. Math. Phys.,2006
3. Cacciatori, S. L. and Cerchiai, B. L., “Exceptional groups, symmetric spaces and applications,” arXiv:0906.0121 (2009).
4. On the Mathieu conjecture for SU(2);Indagationes Math.,2015
5. Constant terms in powers of a Laurent polynomial;Indagationes Math.,1998