Decomposition mechanism of C4F7N/CO2 gas mixture based on molecular dynamics and effect of O2 content

Author:

Zhao Danchen1ORCID,Yan Jing1ORCID,He Ruixin1ORCID,Geng Yingsan1,Liu Zhiyuan1,Wang Jianhua1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University , Xi'an 710049, China

Abstract

C4F7N/CO2 gas mixtures have attracted extensive attention because of their excellent insulating properties and environmental friendliness. High electrical and thermal stability is an important indicator for evaluating their performance, but there have been few molecular dynamics studies of their decomposition mechanisms. In this study, using ReaxFF molecular dynamics simulations and quantum chemistry theory, the decomposition mechanism of a C4F7N/CO2 gas mixture and the effect of the O2 content on the decomposition of the mixture were simulated on the microscopic level. It was found that there are three main decomposition pathways of C4F7N molecules, of which the generation of C3F4N⋅ and CF3⋅ free radicals is the most likely to occur. COF2 is the main oxygen-containing product of the C4F7N/CO2 gas mixture, and its generation is significantly affected by the simulation time and temperature. COF2 can be regarded as the characteristic decomposition product of the C4F7N/CO2 gas mixture. The addition of O2 slightly promotes the decomposition of C4F7N, whereas the maximum decomposition rate of CO2 decreases by 0.3% and 1% after the addition of 2% and 8% O2, respectively. Relevant results of this research can provide a theoretical basis and guidance for research into the performance of C4F7N/CO2 gas mixtures and practical engineering applications of these mixtures in the future.

Funder

National Key Research and Development Program of China

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3