Cross polarization from dipolar-order under magic angle spinning: The ADRF-CPMAS NMR experiment

Author:

Wolf Tamar1ORCID,Jayanthi Sundaresan2ORCID,Lupulescu Adonis3ORCID,Frydman Lucio1ORCID

Affiliation:

1. Department of Chemical and Biological Physics, Weizmann Institute of Science 1 , Rehovot 7610001, Israel

2. Department of Physics, Indian Institute of Space Science and Technology 2 , Valiamala, 695547 Thiruvananthapuram, Kerala, India

3. Extreme Light Infrastructure—Nuclear Physics ELI-NP, Laser Gamma Experiments Department (LGED), “Horia Hulubei” National Institute for Physics and Nuclear Engineering IFIN-HH 3 , 30 Reactorului Street, 077125 Bucharest-Măgurele, Romania

Abstract

Techniques for enhancing the signals arising from low-γ, insensitive (I) nuclei are central to solid-state nuclear magnetic resonance. One of the leading and best-established methods to sensitize these unreceptive species is Hartmann–Hahn cross polarization (HH-CP), a polarization transfer mechanism often executed under MAS. Herein, we explore the possibility of utilizing the 1H dipolar order created via adiabatic demagnetization in the rotating frame (ADRF), to enhance the unreceptive spins under MAS. It is found that an efficient polarization transfer via ADRF-CPMAS is not only possible but can exceed, at least in some instances involving plastic crystals, the efficiency of an optimized HH-CPMAS transfer. The experiment requires low radiofrequency nutation fields on both the 1H- and the I-spin channels, and displays unusual matching conditions that are reminiscent of the zero- and double-quantum matching conditions arising under CPMAS, albeit centered at zero frequency and demanding the simultaneous involvement of several spins. The origin of these multi-spin transfer processes is analytically derived and numerically simulated in predictions that compare well with experimental 13C and 15N results collected on model compounds at different spinning speeds. These derivations start from descriptions that depart from traditional thermodynamic arguments, and treat instead the ADRF processes in static and spinning solids on the basis of coherent evolutions. The predictions of these analytical derivations are corroborated by numerical simulations. The effects of additional factors, including chemical shift anisotropies, J-couplings, and radiofrequency inhomogeneities, are also theoretically and experimentally explored.

Funder

Israel Science Foundation

Weizmann Institute of Science

Clore Israel Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3